Variable multistep methods for delay differential equations
نویسندگان
چکیده
منابع مشابه
Linear Multistep Methods for Impulsive Differential Equations
This paper deals with the convergence and stability of linear multistep methods for impulsive differential equations. Numerical experiments demonstrate that both the mid-point rule and twostep BDFmethod are of order p 0when applied to impulsive differential equations. An improved linear multistep method is proposed. Convergence and stability conditions of the improved methods are given in the p...
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملVariable Step-size Implicit-explicit Linear Multistep Methods for Time-dependent Partial Differential Equations
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily impleme...
متن کاملExplicit Multistep Methods for Nonstiff Partial Differential Equations
We approximate the solution of initial boundary value problems for equations of the form Au′(t) = B(t, u(t)), t ∈ [0, t?]. A is a linear, selfadjoint, positive definite operator on a Hilbert space (H, (·, ·)) and B is a possibly nonlinear operator. We discretize in space by finite element methods and for the time discretization we use explicit linear multistep schemes. We derive optimal order e...
متن کاملLinear Multistep Methods for Volterra Integral and Integro-Differential Equations
In these appendices we present, successively, I conditions for the existence of a unique solution of (1.1) and (1.2); II three tables of coefficients of forward differentiation formulas, and of two common LM formulas for ODEs, viz., backward differentiation formulas and Adams-Moulton formulas; III two lemmas which are needed in: IV proofs of the main results of this paper, as far as they are no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2002
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(01)00162-5